Energetics and possible formation and decay mechanisms of vortices in helium nanodroplets
نویسندگان
چکیده
Though vortices are an unavoidable presence in bulk superfluid helium, they have not been observed to date in helium nanodroplets. The energy and angular momentum of both straight and curved vortex states of a helium nanodroplet are examined as a function of droplet size. For droplets in the size range of many experiments, it is found that during the pickup of heavy solutes, a significant fraction of events deposit sufficient energy and angular momentum to form a straight vortex line. Curved vortex lines exist down to nearly zero angular momentum and energy, and thus could in principle form in almost any collision. Further, the coalescence of smaller droplets during the cooling by expansion could also deposit sufficient angular momentum to form vortex lines. Despite their high energy, most vortices are predicted to be stable at the final temperature ~0.38 K! of helium nanodroplets due to lack of decay channels that conserve both energy and angular momentum.
منابع مشابه
Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.
We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechani...
متن کاملSpectroscopy and dynamics in helium nanodroplets
This article provides a review of recent work in the field of helium nanodroplet spectroscopy with emphasis on the dynamical aspects of the interactions between molecules in helium as well as their interaction with this unique quantum solvent. Emphasis is placed on experimental methods and studies introducing recent new approaches, in particular including time-resolved techniques. Corresponding...
متن کاملCollective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets
Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, wi...
متن کاملWave packet dynamics of K2 attached to helium nanodroplets
The dynamics of vibrational wave packets excited in K2 dimers attached to superfluid helium nanodroplets is investigated by means of femtosecond pump-probe spectroscopy. The employed resonant three-photon-ionization scheme is studied in a wide wavelength range and different pathways leading to K 2 -formation are identified. While the wave packet dynamics of the electronic ground state is not in...
متن کاملStability of two-component alkali clusters formed on helium nanodroplets
The stability of two-component clusters consisting of light (Na or K) and heavy (Rb or Cs) alkali atoms formed on helium nanodroplets is studied by femtosecond laser ionization in combination with mass spectrometry. Characteristic stability patterns reflecting electron shell-closures are observed in dependence of the total number of atoms contained in the mixed clusters. Faster decay of the sta...
متن کامل